Algebra Basics and Formulae

What is Algebra?

Algebra is a part of mathematics where we use letters/symbols to represent numbers in an equation/formula/inequality, and then manipulate them using some rules.

Symmetrical and Unsymmetrical expression

  • Unsymmetrical expression: It is an expression in which the weight of all the variables (say a, b,c …) is not the same.

    For example, a+b+c2,a2+b2c2,a3+b3+c2 etc

  • Symmetrical expression: It is an expression in which the weight of all the variables is equal.

    For example, a + b + c, 3a + 3b + 3c, a2+b2+c2,a3+b3+c3, ab + bc + ca etc.

    So, in a symmetrical expression we can interchange the positions of the variables.

Algebra Formulae

Now, let’s have a look at some of the basic formulae that we are going to use in this chapter.

Square Formulae

Square Formulae Type 1: Two Variables

(x+y)2=x2+y2+2xy=(xy)2+4xy
(xy)2=x2+y22xy=(x+y)24xy

x2y2=(x+y)(xy)
x2+y2=(x+y)22xy=(xy)2+2xy

(x+y)2+(xy)2=2(x2+y2)
(x+y)2(xy)2=4xy

Square Formulae Type 2: Three Variables

(x+y+z)2=x2+y2+z2+2(xy+yz+zx)
(xy+z)2=x2+y2+z2+2(xyyz+zx)
(xyz)2=x2+y2+z2+2(xy+yzzx)

Square Formulae Type 3

If (xa)2+(yb)2+(zc)2 = 0, then x – a = 0, y – b = 0 & z – c = 0
i.e. If A2+B2+C2 = 0, then A = B = C = 0

A2+B2+C2ABBCCA = 0, then A = B = C

Cubic Formulae

Cubic Formulae Type 1: Two Variables

(x+y)3=x3+y3+3xy(x+y)
(xy)3=x3y33xy(xy)

(x+y)3+(xy)3=2x(x2+3y2)
(x+y)3(xy)3=2y(3x2+y2)

x3+y3=(x+y)(x2+y2xy)=(x+y)33xy(x+y)
x3y3=(xy)(x2+y2+xy)=(xy)3+3xy(xy)

xnyn=(xy)(xn1+xn2.y+xn3.y2++yn1)

Cubic Formulae Type 2: Three Variables

(x+y+z)3=x3+y3+z3+3(x+y)(y+z)(z+x)

x3+y3+z33xyz=(x+y+z)(x2+y2+z2xyyzzx)
= (x+y+z)×12[(xy)2+(yz)2+(zx)2]

When x + y + z = 0, then x3+y3+z3=3xyz

Function and Inverse Function Formulae

Type 1: x+1x

If x+1x = a, then:

  • x1x=a24

  • x2+1x2=a22

  • x3+1x3=a33a

If x+1x = 1, then x3 = –1.
If x+1x = -1, then x3 = 1

If x+1x = 2, then x = 1
If x+1x = -2, then x = – 1

If x+1x=3, then x6 = –1

Type 2: x1x

If x1x = a, then:

  • x+1x=a2+4

  • x2+1x2=a2+2

  • x31x3=a3+3a

Type 3: x2+1x2

If x2+1x2 = a, then:

  • x+1x = a+2

  • x1x = a2

If x2+1x2 = 1, then:

  • x3+1x3 = 0 and x6 = –1

Type 4: Higher Even Powers

x4+1x4=(x2+1x2)22=[(x1x)2+2]22

x6+1x6=(x3+1x3)22=(x2+1x2)33(x2+1x2)

Type 5: Higher Odd Powers

x5+1x5=(x2+1x2)(x3+1x3)(x+1x)

x7+1x7=(x4+1x4)(x3+1x3)(x+1x)

x51x5=(x2+1x2)(x31x3)(x1x)

x71x7=(x4+1x4)(x31x3)+(x1x)

Algebra Properties

Property 1: Distributive law

x (y + z) = xy + xz

Property 2: Componendo and Dividendo

If ab=xy, then a+bab=x+yxy

If x+yxy = z, then , xy=z+1z1

Next
Share on: